

MODELOVANÍ CBCT A SOUVISEJÍCÍCH POHYBOVÝCH ARTEFAKTŮ

> AUTOR: ANNA POVOLNÁ VEDOUCÍ: MARTIN STEINER

ZAMĚŘENÍ TUMORŮ

- IGRT využití zobrazovacích metod k verifikaci či k řízení pozice pacienta při ozařování
- 2D
 - Portálové MV 2D snímky terapeutický svazek (6 MV + EPID)
 - Kombinace kV-MV snímkování
 - kV 2D snímky přídavný zobrazovací systém (OBI, XVI)
- **3**D
 - kV fan beam CT
 - MV fan beam CT (tomoterapie)
 - MV cone beam CT
 - kV cone beam CT

ARTEFAKTY VE SNÍMCÍCH KV CBCT

ANALÝZA DÝCHÁNÍ

- Kruhové artefakty
 - Odezva detekčních elementů není stejná
 - Korekční mapa z homogenního fantomu
- Tvrdnutí svazku
 - Kosti, kovy (zeslabení je jiné než pro vodu)
- Rozptyl
 - Významný pro široký svazek, redukuje se korekčními algoritmy
- Aliasing
 - Podvzorkování snímaného objemu (Moire patterns)
 - Větší počet projekcí na rotaci, lepší interpolace a sofistikovanější zpětná projekce
- Šum
- Pohybové artefakty způsobené pohybem pacienta

- 500 ml vzduchu na jeden nádech
- I2 20 nádechů za minutu
- Dechový cyklus v průměru trvá 3-5 s
- Poměr výdech/nádech se udává 2:1, nebo spíš nádech-výdech-pauza s poměry 1:1:1

	RV+ERV+TV [I]	Δ [%]
Ženy	2,3	21,7
Muži	2,8	17,9

BARRETT, Kim E. *Ganong's review of medical physiology*. 24th ed. New York: McGraw-Hill Medical, 2012. Lange medical book. ISBN 978-1-259-00962-4.

- Respiration-Correlated Cone-Beam CT
 - Předpoklad pravidelného dýchání
- Motion-Compensated Cone-Beam CT
 - Analytické algoritmy
 - lterativní algoritmy

SHEPHERD, Justin. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Polish Journal of Radiology [online]. 2014, 79, 181-193 [cit. 2018-10-02]. DOI: 10.12659/PJR.890745. ISSN 0137-7183. Dostupné z: http://www.polradiol.com/abstract/index/idArt/890745

CÍLE DIPLOMOVÉ PRÁCE

Navrhnout experimentální či výpočetní metody umožňující zkoumání pohybových artefaktů v CBCT

- Pohyblivý dýchací fantom
 - Ve fantomu dochází ke změně objemu
 - Nastavitelné parametry (např. amplituda, frekvence) pohybu (dýchání) pro analýzu jejich vlivu na vznik artefaktů
- Virtuální model fantomu
 - Kvalita produkovaných artefaktů dosahuje úrovně jako u fyzického fantomu
 - Netrpí technickými nedostatky a je možné libovolně nastavit parametry pohybů (dýchacích či svazku)
- Srovnání naměřených artefaktů s artefakty vytvořenými simulací

KONSTRUKCE POHYBLIVÉHO DÝCHACÍHO FANTOMU

- Dřevěná kostra + závitové tyče
- PMMA trubka vnější průměr 18 cm, tloušťka stěny 3 mm a délka 30 cm
- Latexový balonek s molitanovým míčem o průměru 118 mm + kuličky
- Víko se zátkou pro napojení balonku
- Plastový píst
- Lineární motor
- Vývojová deska Arduino UNO + H-můstek
- AC Adapter

SKLENĚNÉ KULIČKY

- Pro lepší měření artefaktů (jen posun)
- 2 rozměry
 - I6 mm průměr (I kus)
 - 5 mm průměr (5 kusů)

Průměr	Chemické složení skla [%]							
[mm]	SiO ₂	Na ₂ O	K ₂ O	CaO	BaO	ZnO	B_2O_3	AI_2O_3
16	68,0	11,0	6,0	6,0	4,0	3,0	0,1	0,6
5	80,4	4,2	-	-	-	-	13,0	2,4

Rozložení kuliček

PLASTOVÝ PÍST

- Nejporuchovější část, v současnosti 3. verze
- Vytištěn na 3D tiskárně, povrch upraven pomocí primeru
- I.verze
 - Nedostatečná výplň ve středu \rightarrow prohýbání pístu \rightarrow únik vody
- 2. verze
 - Hustší výplň ve střední části \rightarrow plynulejší pohyb
- 3. verze
 - Změna struktury výplně
 - Další technické problémy \rightarrow testování zatím neúspěšné

LINEÁRNÍ MOTOR A SOFTWARE FANTOMU

- motorPlice program napsán v jazyce Wiring
- Manuální ovládání
- Nastavitelné parametry dýchací křivky (automatický pohyb)
 - Doba simulace [minuty]
 - Výkon = posun [0 255 jednotek]
 - Perioda dýchání [µs]

🕵 PuTTY Configuration

Category:

📄 Se	ssion
	- Logging
🚊 Te	minal
	 Keyboard
	·· Bell
	- Features
🚊 Wi	ndow
	Appearance
	Behaviour
	- Translation
	Selection
	- Colours
🖻 Co	nnection
	·· Data
	Proxy
	- Telnet
	Rlogin
÷	SSH
	Serial

	Options controlling local serial lines			
	Select a serial line			
d	Serial line to connect to	COM3		
2	Configure the serial line			
,	Speed (baud)	9600		
ince ur	Data bits	8		
ion	Stop bits	1		
n	Parity	None \sim		
	Flow control	None 🗸 🗸		

Open

Cancel

COM3 - PuTTY

Х

START OVLADANI Mezernik - STOP W - zvysit vykon S - snizit vykon

- D dopredu
- A dozadu
- M Spustit cyklus dychaci krivky

Vykon motoru: 100 (plati pouze pro manualni posun)

PROCES SESTAVENÍ VIRTUÁLNÍHO MODELU FANTOMU

01

Parametrizace pohybu fantomu

- Použita data z měření
- Volba mezi p(t) a V(t)

02

MC simulace jednotlivých projekcí

 C++ aplikace egs_cbct (EGSnrc) 03

Rekonstrukce 3D obrazu

 Toolbox ASTRA (MATLAB)

PARAMETRIZACE

• **V(t):** $r(t) = \sqrt[3]{\frac{3V(t)}{4\pi}}$ $V(t) = V_{max} - v_{V,vdech} \cdot t$ t = (0, 1600)t = (1601, 2667) $V(t) = V_{min}$ t = (2668, 4000) $V(t) = V_{min} + v_{V,niadech} \cdot t$ **p(t):** $r = \sqrt[3]{abc}$ $p(t) = v_{p v dech} \cdot t$ t = (0, 1600)*t* = *(*1601, 2667*)* $p(t) = p_{max}$ t = (2668, 4000) $p(t) = p_{max} + v_{p,niadech} \cdot t$

MC SIMULACE PROJEKČNÍCH SNÍMKŮ FANTOMU

- Geometrie fantomu
 - S bowtie filtrem x bez bowtie filtru
- Zdroj
 - Monoenergetický x tabulované spektrum
- Skórovací možnosti a volba výstupu
 - Ray-tracing x planar
 - Display type: total, attenuated, scatter
- Generátor náhodných čísel
- PC s čtyřjádrovým CPU intel CORE i7-3632QM
- Výpočet nastaven na 7 vláken

VYLADĚNÍ PROJEKČNÍCH SNÍMKŮ - NCASE

Projekce s ncase = 12 800 000

Projekce s ncase = 128 000 000

VYLADĚNÍ PROJEKČNÍCH SNÍMKŮ – BOWTIE FILTR

Projekce bez bowtie filtru

Projekce s bowtie filtrem

VYLADĚNÍ PROJEKČNÍCH SNÍMKŮ

E	Cal. type	Dis. type
spek/mono	Ray/planar	total/att/scat
mono	Ray-tracing	total
mono	Ray-tracing	attenuated
mono	planar	total
mono	planar	attenuated
spektrum	Ray-tracing	total
spektrum	Ray-tracing	attenuated
spektrum	planar	total
spektrum	planar	attenuated

REKONSTRUKCE

- Algoritmus: SIRT3D_CUDA
- Geometrie objemu: 512×512×175 px
- Projekční geometrie zvolena 3D cone_vec beam s detektorem posunutým o 16 cm:
 - det_row_count počet řad detektoru v jediné projekci 768
 - det_col_count počet sloupců detektoru v jediné projekci 1024
- GPU NVIDIA Quadro P5000 (velikost paměti je 16 GB)
- Matlab 2017b

VYLADĚNÍ PROJEKČNÍCH SNÍMKŮ PO REKONSTRUKCI - RNG

Bez změny RNG

Se změnou RNG

VÝBĚR PROJEKCÍ

Měření

REKONSTRUKCE – POČET ITERACÍ

Měření - pohyb

150 iterací

100 iterací

200 iterací

Simulace - pohyb

VYHODNOCOVÁNÍ OBRAZŮ – MÍRA ARTEFAKTŮ

Mean absolute pixel difference from ground truth $MAPD = \frac{\sum_{i=1}^{N} |GT_i - X_i|}{N}$

- GT_i intenzita pixelu i v ground truth datasetu
- X_i intenzita pixelu i z datasetu zatíženého artefakty
- N celkový počet pixelů v datasetu

COOPER, Benjamin J, Ricky T O'BRIEN, John KIPRITIDIS, Chun-Chien SHIEH a Paul J KEALL. Quantifying the image quality and dose reduction of respiratory triggered 4D cone-beam computed tomography with patient-measured breathing. *Physics in Medicine and Biology* [online]. 2015, **60**(24), 9493-9513 [cit. 2018-10-02]. DOI: 10.1088/0031-9155/60/24/9493. ISSN 0031-9155. Dostupné z: http://stacks.iop.org/0031-9155/60/i=24/a=9493?key=crossref.80ec25543a4815c545a6b471a4bc15b

VÝSLEDKY – MĚŘENÍ S FANTOMEM

Posun 0,5 cm

MAPD = 8,36

Posun 0,9 cm MAPD = 10,07

VÝSLEDKY – VIRTUÁLNÍ FANTOM

Posun 0,9 cm

MAPD = 0, I

posun pístu [cm]	perioda [s]	MAPD
0,5	3	0,086
0,9	3	0,103
0,9	3,3	0,105
0,5	4	0,084
0,7	4	0,092
0,9	4	0,100
1,1	4	0,108
0,5	5	0,089
0,9	5	0,109

VÝSLEDKY – VIRTUÁLNÍ FANTOM

SHRNUTÍ A ZÁVĚR

- Úspěšné sestavení pohyblivého fantomu a měření pohybových artefaktů na CBCT
- Další měření s novým pístem po vyřešení technických problémů větší statistika, hlubší analýza
- Sestavení procesu tvorby virtuálního fantomu a výskyt pohybových artefaktů v jeho 3D obrazech
- Přenastavení generátoru náhodných čísel
- Vyzkoušet zahrnutí bowtie filtru do simulace zdroje zrychlení simulace, hypotéza potlačení kruhových artefaktů v obrazech s bowtie filtrem
- Důkladnější porovnání pohybových artefaktů z měření a ze simulace
- Odhad nejistoty nastavení pacienta při registraci CBCT obrazu zatíženého artefakty z dýchání na plánovací CT

DĚKUJI ZA POZORNOST