Transmisní portálová in-vivo dozimetrie

6. Konference radiologické fyziky Ing. Klára Badraoui Čuprová, Ph.D. <u>cuprovak@centrum.cz</u>

13.-15.4.2016

OBSAH PREZENTACE

- 1. Transmisní dozimetrie PROČ?
- 2. O projektu
- 3. Cíl projektu
- 4. Metody zpracování
- 5. Výsledky
- 6. Závěr

1. Transmisní dozimetrie - PROČ?

MODERNÍ RADIOTERAPIE

- Konformita ozáření
- Eskalace D
- P kontroly nádoru
- Riziko významnějších komplikací

- Důkladné ověření celého řetězce
- Ověření: přesnosti výpočtu DD aplikované D a DD geometrické lokalizace

Technika IMRT

- Svazek s nestejnými fluencemi fotonů; vysoký stupeň konformity DD se strmým gradientem D; možnost eskalace D
- Využití techniky omezeno nejistotami nastavení pacienta a fyziologickými procesy lidského těla

Verifikace před ozářením pacienta

- Ověření přesnosti výpočtu DD
 - alternativní TPS
 - MC
- Ověření aplikované D a DD
 - experimentální verifikace D a DD vypočtené TPS
- Ověření geometrické lokalizace pomocí zobrazovacích metod (IGRT)
 - kV rentgenka a flat panel detektor x DRR
 - EPID x DRR

Jiný přístup k verifikaci - Dozimetrie IN-VIVO

Bodová – nejčastěji dávka v místě vstupu svazků do pacienta

- Polovodičové diody, TLD
- Běžné na pracovištích

Plošná – detektor umístěn pod pacientem

≻ EPID

> IMRT

- V ČR X , naše TPS neumožňují predikci transmisních obrazů
- IMRT
 Projekt zaměřen tímto směrem

Plošná in-vivo dozimetrie

Efektivní ověření správného ozáření pacienta z každého pole.

Ověření:

- mechanické a dozimetrické stability urychlovače, např. správné realizace fluenční mapy (funkce MLC)
- správného přenosu parametrů z TPS do verifikačního systému
- správné a reprodukovatelné lokalizace pacienta

Přímá metoda

Měřená transmisní mapa versus predikce

Predikce na základě vstupní fluenční mapy a distribuce tkáně prozařované ze směru daného pole, např. metodou MC.

Inverzní metoda

Rekonstrukce DD v pacientovi z měřené transmisní mapy versus predikce z TPS

Měřený portálový obraz – primární fluence & fluence z rozptylu. Odečet fluence z rozptylu z naměřené mapy a zpětná projekce primární fluence přes plánovací CT => primární fluence v pacientovi. Konvoluce distribuce s kernely deponované E => DD v pacientovi.

2. O projektu

- Nemocnice Na Bulovce
- Varian Clinac 2100 C/D
- EPID aS500
- MC kód EGSnrc, BEAMnrc, DOSXYZnrc
- ➢ MATLAB
- OmniPro l´mRT software

EPID

- Kontrola nastavení polohy pacienta
- QA ověření velikosti radiačního pole, symetrie, homogenity, správné f-ce lamel
- IMRT verifikace verifikace DD
- In-vivo dozimetrie

EPID aS500

- Scintilační detektor s detekční plochou 40x30 cm²
- 512x384 pixelů s prostorovým rozlišením 0.784 mm
- Interakce e- a fotonů ve scintilační vrstvě fosforu, viditelné světlo detekováno v a-Si panelu
- Každý pixel je tvořen jednou fotodiodou a jedním tranzistorem. Fotodiody zaznamenávají světelný signál a tranzistory konvertují viditelné světlo na elektrický signál.

Metoda Monte Carlo

- Poskytuje numerická řešení k problémům, které jsou příliš komplikované k analytickému řešení.
- Pomocí náhodných čísel umožňuje simulovat náhodné děje, u kterých známe jejich pravděpodobnostní popis.
- V případě simulace transportu záření v látce je P realizace jednotlivých interakcí částic určena z σ.
- Při vygenerování dostatečně velkého počtu událostí poskytuje metoda dostatečně přesný výsledek modelovaného děje.

EGSnrc

- Systém kódů pro MC simulaci transportu elektron-fotonových svazků v libovolné geometrii; energie od keV do TeV
- Standard, specializuje se na RT a RD

BEAMnrc

Systém kódů pro modelování různých typů radioterapeutických přístrojů pomocí různých předdefinovaných geometrických útvarů.

DOSXYZnrc

- MC kód pro výpočet dávkové distribuce ve voxelovém fantomu, přičemž materiál a hustota každého voxelu se může lišit. Modelován může být libovolný fantom.
- Doprovodný program ctcreate tvorba fantomu pacienta na základě CT řezů.

Modelované interakce

- Rayleighův rozptyl
- ➢ Fotoefekt
- Comptonův rozptyl
- Tvorba elektron-pozitronových párů
- Produkce brzdného záření
- Deexcitace atomů charakteristické záření, emise Augerových a Coster-Kronigových elektronů
- Anihilace pozitronu
- Rozptyl elektron-elektron a elektron-pozitron
- Vícenásobný Coulombovský rozptyl

MATLAB

- Interaktivní programové prostředí a skriptovací programovací jazyk
- Vyvíjen společností MathWorks; OS Windows, Linux, Mac OS X
- MATrix LABoratory klíčovou datovou strukturou jsou matice
- Využíván pro vědecké a výzkumné účely
- Umožňuje počítání s maticemi, vykreslování 2D i 3D grafů funkcí, implementaci algoritmů, počítačovou simulaci, analýzu a prezentaci dat i vytváření aplikací včetně uživatelského rozhraní, možnost tvorby a přidávání nových funkcí

OmniPro l'mRT software

- Analýza a porovnání dávkových rozložení
- Analýza dat: histogramy, profily, izodózní křivky, součet, rozdíl, DTA, gama metoda
- Zobrazení dat v 1D, 2D, 3D
- Import naměřených dat, dat z TPS a po úpravách i MC dat

3. Cíl projektu

Transmisní portálová in-vivo dozimetrie - měření versus MC predikce transmisní mapy

I. Model hlavice urychlovače

- Mnoho objektů má zásadní vliv na výsledný svazek záření => nutné co nejpřesněji namodelovat.
- Informace o rozměrech a materiálech Varian
- Použit systém BEAMnrc
- e- svazek dopadající na terčík problematické namodelovat, doporučeno modelovat jako monoenergetický
- Parametry E a FWHM určeny na základě měření a modelování dávkových profilů a PDD ve velkém vodním fantomu. Uvažovány různé E (5.7, 6, 6.3, 6.4, 6.5 MeV) a FWHM (0.1, 0.15, 0.25 cm). Nejlepší kombinace určena na základě analýzy odchylek naměřených křivek od modelovaných.
- Použit systém DOSXYZnrc, zdroj soubor s fázovým prostorem z BEAMnrc.

II. Výpočet dávkové distribuce v pacientovi

Pro výpočet distribuce použit systém DOSXYZnrc, přičemž: zdroj - soubor s fázovým prostorem z BEAMnrc, fantom pacienta – tvořen v programu ctcreate z CT řezů

MC predikce versus TPS (vizuální porovnání izodóz)

III. Modelování systému EPID

- Informace o rozměrech a složení jednotlivých vrstev Varian
- Knihovna σ v EGSnrc neobsahuje data pro některé materiály => tvorba vlastního souboru v programu PEGS4 (definice složení prvků v materiálech včetně jejich hmotnostního zastoupení)
- Ověření modelu portálu množstvím pravidelných a nepravidelných polí
- Ověření transmise RW3 fantomem (fantom 30x30x5 cm³)

IV. Modelování pacienta a portálu

- Problematické, v DOSXYZnrc nelze současně modelovat pacienta a EPID; pacient modelován jako CT voxel fantom, EPID na základě definice voxelů a materiálů v nich.
- Řešení sloučení obou v MATLABu. Možnost predikce transmisní mapy při G=0°.
- Verifikace sloučeného fantomu (vizuální; MC predikce transmisní mapy versus měření).

Pacient

EPID

V. Predikce dávkové mapy při rotaci gantry

- Portál pevně spjatý s G, při rotaci G rotuje i portál.
- V systému DOSXYZnrc lze sice volit úhel svazku dopadající na pacienta, nicméně v sloučeném fantomu (vytvořeném v předchozím kroku) je pacient a portál pevně spjatý. Problém.
- Řešení ozáření pacienta při úhlu θ lze nahradit pouhou rotací pacienta o negativní úhel θ, přičemž G a portál zůstávají bez pootočení. Problém řešen v MATLABu. Následné sloučení orotovaného pacienta s portálem.
- Ověření metody (vizuální; MC predikce transmisní mapy versus měření).

Ozáření pacienta při úhlu theta

Rotace pacienta o úhel minus theta

4. Metody zpracování

- I. Analýza dávkového rozložení
- Srovnání ortogonálních dávkových profilů přes referenční bod
 Vizuální srovnání izodóz
- Gama metoda zohledňuje jak kritérium D tak vzdálenosti

Rozložení extrahována z MC výstupních souborů v MATLABu.

II. Analýza dat a statistika

- Výsledná hodnota (dávka) je normalizována k počáteční částici dopadající na prvotní zdroj.
- Nejistota určena metodou "History by History", v které jsou skórované veličiny seskupovány na základě jedné nezávislé události/historii po druhé.

$$s_{\overline{X}} = \sqrt{\frac{1}{N-1} \left(\frac{\sum_{i=1}^{N} X_i^2}{N} - \left(\frac{\sum_{i=1}^{N} X_i}{N}\right)^2\right)}$$

kde N je počet nezávislých událostí/historií

a Xi je skórovaná veličina ve statisticky nezávislé události i (jedna událost zahrnuje všechny dráhy částic sdružené s jednou počáteční částicí).

III. Kalibrace EPID pro doz. účely

Pořízení obrazu dark field, flood field, korekce na základě dávkového profilu, převod signálu na D

- ➢ DF pořízen bez radiace, určení odezvy ∀ pixelu na pozadí
- FF pořízen ozářením senzitivní části det., určení relativní citlivosti V pixelu v matici, uvažována uniformní intenzita svazku => odstranění nehomogenit v radiačním poli, např. odstranění rohů svazku

$$Korigovaná_odezva_{i,j} = \frac{Odezva_{i,j} - DF_{i,j}}{FF_{i,j}}.\overline{FF}; i \in 1:384, j \in 1:512$$

- Aplikace korekční matice k zachování dozimetrických vlastností svazku. Navrácení skutečné neuniformity svazku. Portálový obraz vynásoben radiálně symetrickou maticí získanou z diag. profilu měřeného ve vodě pro pole 40x40 cm2.
- Převod signálu na D, signál vztažen k D naměřené ref. ion. komorou. Portálové dávky jsou po kalibraci zobrazeny v kalibračních jednotkách CU.

IV. Kalibrace CT

Kalibrační křivka – citlivá na spektrum RTG svazku CT

- Kalibrace na základě tkáňově ekvivalentních vzorků problém- materiálové složení neodpovídá realitě; měření s reálnou tkání technicky obtížně proveditelné; mrtvý biologický materiál může mít různé radiologické vlastnosti
- Stoichiometrická kalibrace teoretický přístup ke kalibraci, využívá znalosti hustot reálných tkání a hm. zastoupení prvků v tkáních

5. Výsledky

Model hlavice urychlovače

PDD pro různé E elektronového svazku dopadající na terčík (pole 3x3 cm²)

Rozdíl mezi naměřenou a nasimulovanou PDD pro různé E elektronového svazku dopadající na terčík (pole 3x3 cm²)

Predikované dávkové distribuce

 $\leftarrow MC$

 \uparrow AAA

 \leftarrow PBC

Ověření modelu EPID

[%] Signal 110.0 100.0 90.0 80.0 70.0 60.0 50.0 -40.0 30.0 20.0 -10.0 0.0 4.0 5.0 6.0 7.0 -5.0 -4.0 -3.0 0.0 2.0 3.0 -2.0 -1.0 1.0 [cm] X

Měření

MC predikce

X-ové dávkové profily; červeně měřený, zeleně MC pred.

Gama distribuce; 3%, 3mm

Y-ové dávkové profily; červeně měřený, zeleně MC pred.

Gama distribuce; 4%, 4mm

- Větší polostín u MC simulace, hrubší výpočetní mřížka u MC (0.2 cm) v porovnání s jemnějším prostorovým rozlišením detektoru (0.078 cm).
- Červené oblasti v gama distribuci převážně na kraji pole gradientní oblasti.
- Statistická nejistota simulovaných hodnot se pohybovala v rozsahu 2% na hladině významnosti 2 sigma.

Výsledky γ analýzy

Dravidalná							
čtvercová pole	velikost pole [cm]	průměrná hodnota gama (měření x MC predikce)		pole : Močový měchýř	číslo pole	průměrná hodnota gama	
						(měření x MC predikce)	
		kritéria 3 %, 3 mm	kritéria 4 %, 4 mm			kritéria 3 %, 3 mm	kritéria 4 %, 4 mm
	3x3	0.39	0.29		1	0.34	0.26
	5x5	0.38	0.28		2	0.33	0.24
	10x10	0.33	0.25		3	0.33	0.25
	15x15	0.31	0.23		4	0.35	0.26

Nepravideln

pole

iá –						
iu -		průměrná hodnota gama				
	číslo pole	(měření x MC predikce)				
		kritéria 3 %, 3 mm	kritéria 4 %, 4 mm			
	1	0.33	0.24			
	2	0.31	0.24			
	3	0.35	0.26			

kritéria: 3 %, 3 mm
$$\gamma \in \{0.31, 0.4\}$$

4 %, 4 mm $\gamma \in \{0.23, 0.3\}$

Pacientova pole : Parciální uzliny	číslo pole	průměrná hodnota gama (měření x MC predikce)			
		kritéria 3 %, 3 mm	kritéria 4 %, 4 mm		
	1	0.32	0.24		
	2	0.35	0.26		
	3	0.39	0.29		
	4	0.40	0.30		

Tvorba orotovaného, sloučeného a ROI fantomu

1. Transversální CT řez pacienta.

2. Transversální řez vygenerovaným fantomem pacienta.

3. Transversální řez orotovaným fantomem pacienta; G=70°.

4. Transversální řez sloučeným fantomem.

5. Transversální řez zúženým fantomem.

Transmisní in-vivo dozimetrie

Plán 1 (močový měchýř)

	ро	le1	ро	le2	ро	le3	ро	le4
č. frakce x č.	průměrná	gama > 1						
frakce	gama	[%]	gama	[%]	gama	[%]	gama	[%]
1. x 2.	<mark>0.106</mark>	<mark>1.711</mark>	0.205	8.888	<mark>0.127</mark>	<mark>0.29</mark>	<mark>0.122</mark>	<mark>0.749</mark>
1. x 3.	<mark>0.112</mark>	<mark>1.784</mark>	<mark>0.091</mark>	<mark>1.036</mark>	0.197	3.418	<mark>0.174</mark>	<mark>2.492</mark>
2. x 3.	0.187	7.248	0.156	5.994	0.209	3.129	0.214	3.607
1. x 4.	<mark>0.11</mark>	<mark>1.244</mark>	<mark>0.075</mark>	<mark>0.771</mark>	0.187	3.785	0.213	4.568
2. x 4.	0.18	7.796	0.205	7.931	<mark>0.168</mark>	<mark>2.883</mark>	0.276	6.65
3. x 4.	<mark>0.067</mark>	<mark>0.445</mark>	<mark>0.099</mark>	<mark>0.905</mark>	<mark>0.149</mark>	<mark>0.841</mark>	<mark>0.154</mark>	<mark>2.104</mark>
1. x 5.	<mark>0.167</mark>	<mark>2.669</mark>	0.208	8.862	<mark>0.183</mark>	<mark>2.454</mark>	0.244	5.145
2. x 5.	<mark>0.089</mark>	<mark>0.139</mark>	<mark>0.068</mark>	<mark>0.099</mark>	<mark>0.195</mark>	<mark>2.952</mark>	0.251	7.176
3. x 5.	0.249	7.993	0.17	6.087	0.269	5.041	<mark>0.216</mark>	<mark>2.47</mark>
4. x 5.	0.234	9.036	0.21	8.777	0.253	5.733	<mark>0.15</mark>	<mark>0.226</mark>

Výsledky γ analýzy. Porovnání naměřených transmisních obrazů z jednotlivých frakcí.

Plán 2 (parciální uzliny)

	Pole 1		Pole 2		Pole 3		Pole 4	
č. frakce x č.	průměrná	gama > 1						
frakce	gama	[%]	gama	[%]	gama	[%]	gama	[%]
1. x 2.	0.5109	9.588	0.558	10.072	1.099	37.043	1.086	35.529
1. x 3.	0.434	11.773	0.476	9.734	0.925	28.623	1.227	41.721
2. x 3.	0.351	1.813	<mark>0.23</mark>	<mark>1.204</mark>	<mark>0.261</mark>	<mark>1.607</mark>	0.238	4.248
1. x 4.	0.439	11.782	0.523	11.104	1.11	35.032	1.137	38.453
2. x 4.	0.343	3.111	<mark>0.217</mark>	<mark>2.447</mark>	<mark>0.184</mark>	<mark>1.703</mark>	<mark>0.196</mark>	<mark>1.879</mark>
3. x 4.	<mark>0.123</mark>	<mark>1.048</mark>	<mark>0.177</mark>	<mark>2.908</mark>	<mark>0.247</mark>	<mark>1.889</mark>	<mark>0.139</mark>	<mark>1.605</mark>

Výsledky γ analýzy. Porovnání naměřených transmisních obrazů z jednotlivých frakcí.

Tolerance ve FNB pro IMRT verifikace: průměrná gama ≤ 0.3, max 3% gama hodnot >1; není korektní užívat, stanovení vlastních kritérií. Nelze určit, kdy byl pacient nejlépe ozářen, ale u p.u. u fr.č.1 vysoké hodnoty gama. EPID nesprávně nakalibrován či nesprávné ozáření 37 pacienta.

Naměřené x nasimulované transmisní portálové obrazy

- Pole modulované klínem 30°, rotace gantry 255°.

Gama distribuce; 4%, 4mm

12.0

14.0

[cm] X

Y-ové dávkové profily; červeně měřený, zeleně MC pred.

Plán 1 (močový měchýř):

	Průměrná gama						
Číslo pole	3 %, 3 mm 4 %, 4 mm		5 %, 5 mm				
1	0.35	0.27	0.21				
2	0.42	0.31	0.24				
3	0.58	0.44	0.36				
4	0.55	0.41	0.33				

Plán 2 (parciální uzliny):

	Průměrná gama					
Číslo pole	3 %, 3 mm 4 %, 4 mm		5 %, 5 mm			
1	0.57	0.43	0.35			
2	0.54	0.41	0.33			
3	0.61	0.46	0.37			
4	0.46	0.35	0.29			

$$\begin{array}{l} \stackrel{-}{\gamma} \in \left\{ 0.35, 0.61 \right\}; kritéria _ 3\%, 3mm \\ \stackrel{-}{\gamma} \in \left\{ 0.27, 0.46 \right\}; kritéria _ 4\%, 4mm \\ \stackrel{-}{\gamma} \in \left\{ 0.21, 0.37 \right\}; kritéria _ 5\%, 5mm \end{array}$$

Výsledné hodnoty gama analýzy - dle očekávání vyšší v porovnání s předešlým vyhodnocením

Neexistují tolerance na výsledné hodnoty gama – vhodné stanovit na základě velkého souboru pacientů

Správnost a přesnost MC predikce ovlivněna:

- i) Model hlavice urychlovače
- ii) Svazek
- iii) Transport záření látkou pozorně volit parametry určující způsob transportu částic v médiu včetně parametrů vedoucí ke snížení výpočetního času simulace
- iv) Model pacienta fantom s rozlišením 0.2x0.2x0.2 cm³; CT řezy po 0.5cm s rozlišením 0.09x0.09cm². Použití defaultní převodní křivky programu ctcreate.
- v) Stůl
- vi) Model detektoru fantom s rozlišením 0.2x0.2x0.2 cm³
- vii) Lineární interpolace problém převážně v oblasti s vysokým spádem D
- viii) Statistická nejistota výpočtu snaha ji minimalizovat simulací dostatečně

Gama distribuce; 3%, 3mm MC predikce - 1 x 10 simulací velkého počtu historií. PC s procesorem INTEL Core i7-3930K s frekvencí 3,2 GHz: šestijádrový procesor s technologií hyperthreading pro simultánní zpracování až 12 vláken současně => úlohy zpracovávány paralelně. Simultánně spouštěno 10 procesů, ∀ simulace cca 24 hodin. Vytvořen skript v MATLABu ke sloučení výsledků. V případě pouhého jediného zpracování byla dosažena statistická nejistota výpočtu na hladině významnosti 2 sigma nižší než 2 %. Dostačující spouštět 10 paralelních úloh pouhé 2.4 hodiny.

Naměřený transmisní portálový obraz ovlivněn:

- i) Stabilita ozařovacího systému ZPS, ZDS
- ii) Nejistota nastavení pacienta, fyziologické pohyby
- iii) Distribuce tkání v pacientovi odlišná během pořízení CT a během jednotlivých frakcí
- iv) Odezva detektoru detektor vždy kalibrován

Křivka získaná ze stoichiometrické kalibrace CT - charakteristická pro dané CT & uvažuje množství lidských tkání.

6. Závěr

- Vyvinuta a ověřena metoda umožňující hodnotit správnost ozáření pacienta.
- V ČR se transmisní dozimetrie na žádném pracovišti neprovádí, TPS predikce neumožňují. I v cizině nedostatek komerčních systémů, spíše tvorba vlastních systémů na pracovišti.
- Metoda ověřena na 2 pacientských plánech (8 polí) (vzhledem k obsáhlosti práce); neexistují žádné doporučené tolerance na stř. hodnotu γ, nad které by bylo ozáření považováno za nevyhovující.
- Prezentovaná metoda může být využita v klinické praxi za účelem zvýšení kvality RT a může být inspirací pro nemocnice vybavené portálem.
- Velká časová náročnost MC simulace, úlohy řešeny paralelně na vícejádrovém procesoru => využití metody omezeno na menší počet pacientů; cílová skupina – např. děti (jejich tkáně a orgány rychle rostou a jsou citlivější na ozáření).
- Námět na budoucí práci:

 – tvorba výpočetního clusteru s cílem zvýšit výpočetní výkon. Výpočet rozdělit na řešení mnoha nezávislých úloh mezi počítače navzájem propojené počítačovou sítí.

– určení tolerance na parametr střední hodnoty gama na základě sledování výsledků transmisní verifikace u množství pacientů.

Děkuji za pozornost

